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Abstract 

If the  set o f  many point  func t ions  ((G2 - G °, G4 . . . . .  GN)) satisfies the  set o f  equat ions  
arising in the  ~4 mode l  o f  q u a n t u m  field theory ,  then  for a given GN the set ((G2 - G °, 
G4 . . . . .  GN-2) ) , i s  unique in the domain  

,-.irred,, f~g-1/4 V = {((G2 --- G 0, G4 . . . . .  GN_2) )  ~ [ ((G2 - G 0, G4 . . . . .  UN-2)) 1~ < V t E ~ }  

in a locally convex space equipped wi th  a directed family o f  semi-norms,  where f t  are 
positive number s  tha t  depend on details of  GN, and g ,~ 1 is the  effective coupling 
constant .  

1. Introduction 

In this paper we consider the descending problem in Green's function 
approach to quantum field theory. By Green's function approach we mean 
that once equations for Green's functions (many point functions) have 
been derived from a given Lagrangian one can forget the under-lying 
operator algebra and one can deal exclusively with Green's functions. By 
descending problem we mean the problem of finding lower Green's functions 
for a given N point function (2 < N < o~). As has been stated in our previous 
paper (Yoshimura, 1974) one cannot solve a descending problem from 
GN(N >i 6) in the 4~ 4 model of quantum field theory by any known procedure. 
Now let us suppose that a set of Green's functions ((Gn(n ~<N< oo)) were 
known or substituted by model functions subject to appropriate conditions 
and ask whether there can be G n' 4= Gn(n <.N - 2) corresponding to the 
given G N. 

Traditionally the quantum mechanics is formulated in Hilbert spaces. But, 
fortunately or unfortunately, one cannot search Green's functions of quantum 
field theory within a Hilbert space because Green's functions are not square 
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integrable. Therefore one has to deal with operator equations in more general 
function spaces. 

Recently, Gandac (1973) and Marinescu (1969, 1972) developed powerful 
theorems for non-linear operator equations in locally convex space. So we 
consider the descending problems in Green's function approach to quantum 
field theory in locally convex space instead of Banach space. We then find that 
((Gn; 2 ~< n ~<N - 2)) with semi-norms smaller than certain bounds are unique 
for a given G N in the 44 model. 

2. Nota t ions  and Convent ions  

Let us take the following Lagrangian density 

= 1 Oq~ ~b ½m2~ 2 --goSh 4 (2.1) 
2 3x u 3x u 

and define G2 as a two-point function in the Heisenberg representation: 

G2(x ,  x ' )  = ( 0 1Td~(x)(~(x') 10 ) (2.2) 

For Gn (n ~> 4) we take the amputated n-point functions and define G ~  ed 
(n 1> 6) as parts of n-point functions that are one-particle-irreducible in any 

C> 
Z 

Fig. 1, Graphical representation of E. 

channel. Then the proper self-energy part E is written in terms of G 2 and G 4 
as follow (in momentum representation): 

~(p2)  =go 2 I dq l  d q 2 G 2 ( q l ) G 2 ( q 2 ) G 2 ( P  - q 1 - q2)G4(ql ,  q2, P - q l  ~ -  qz, P) 

-= [a~ 3 * a4 ] (p% (2.3) 

We renormalise this expression as follows (Taylor & Yoshimura, 1973): 
p~ p,2 

W/r 2 Ft/y 2 

Here G4 is so normalised that it is equal to 1 for zero momenta, so that our g 
corresponds to g2 in the more conventional normalisation. The * is short-hand 
for convolution. 
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Four-point function has the following structure: 

G4 = 1 +go[G~2* G4] + g o [ G ~ 4 * G ~  2] + g o [ G ~ 3 * G ~  red] (2.5) 

which we renormalise by substitution 

4 

go [G~ 2 * G a ] ( P t , P 2 , P 3 , P 4 )  _+ gl/Z 1-[ D - ~ ( p i ) D ( P i ) [ G ~  2 *G4](Pl  . . . . .  P4) 
i=1 

=- ~G~ 2 * G4~(Pi ,  - .  . ,P4)  (2.6) 

etc., where 

D(Pi) = P i ,  (2.7) 
3Piu 

and the operation D-1 is carried out in such a way that the resulting 
expression is equal to zero at zero momenta (0, 0, 0, 0) (Taylor & Yoshimura, 
1973). 

As I3 is not bounded for [p2 ] _+ ~ and Gz has a pole at p2 = mr 2., it is more 
convenient to deal with a defined as follows: 

13ren(p2) 

G(P2) = (t92 _ mr  2 _ g Gren 092))(/)2 _ mr2 _ ie) (2.8) 

Then the equations to be considered are: 

62 - P~(G4, a) = 0 (2.9) 

G4 - 1 - P4(Gi6 rrea, G4, 6) = 0 (2.10) 

where 

gG ° ~(G ° + 0) *3 * G4~ 
F2(G4, 6) = {(G0)_ 1 _ g~(GO + 0).3 * G4~) (2.11) 

F 4 ( G ~  ed, G4, a ) = g l / 2 ~ ( G °  + a) .2 * G4~ 

+g~(G 0 + 0) *4 * G4"2~ +g~(G 0 + a)+ .3 * G~rred~ 

(2.12) 

Then the question is whether these equations can be satisfied by more than 
one set of  ((a, G4)) for a given G~ red. Let us define a pair of  operators 

((T[a4, 6:., "l, U[a~ ed, 64, 6:.,-])) --- U (2.13) 
where 

T[G 4, 6: s, t] = 

g G° (~ (G  ° + o) *3 * G4~ - ~(G ° + a + s) .3 * (G4 + t)~) 
= {(G 0)-1 _ g~(G 0 + g ) . 3 .  G4]){(G 0)-1 _ g~(G 0 + a + s) .3 * (G4 + t)~} - s 

(2.14) 
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U[G~ red, a4,  a ,  s, t] 

= g l / 2  ~(G 0 + o + s) .2 * (G 4 + t)i  H + g~(G ° + o + s) .4 * (G 4 + t)*2~ 

+g~(G 0 + o + s) .3 * G~6 red ~ - gl/2 ~(G 0 + 0),2 , G4 ~ 

- g ~ ( G  ° + 0) *4 * G~2~ -g[~(G ° + o) .3 * Ggrea~ - t (2.15) 

Then the question becomes whether the equation 

U[((s, t))] = 0 (2.16) 

has a non-trivial solution ((s, t)) # 0. From now on we call this problem Q6. 
(And similarly, we can define problems Qn,  rt = 4 ,  8 ,  10 . . . .  ) 

3. Locally Convex Space 

As a space more general than Hilbert space, we consider a locally convex 
space. 

Semi-norm is a map 1" I f rom a vector space ~ over a field g into 
R + C3 {0} satisfying the following conditions: 

(SN1) Ixa +x21<~txtl+lx21 Vxl,xz~f3 
(SN2) taxf = l a l l x l  V a ~  St, V x ~ 3  

If  convergence in ~3 is defined in terms of  a directed family of  semi-norms 
satisfying conditions 

(SN4) Vx @ ~B, x g: 0 ~ t ~ ~ such that I x l~ ~ 0 

(SN4) V q ~ , ~  V t 2 E ~  3 t ~ . ~  such that 

Ixl,, <lxLIx l~  <lxlL 

then we call ~3 a locally convex space. A transfinite set ,~ = {t, < } is said to be 
directed if 

V tl, t 2 E 3  3t E,,~ such that t >  t l , t> t 2 

We now have the following theorem adapted from Gandac's paper and 
Marinescu's book.  

[Theorem 1. Let f b e  a map from a set U in a locally convex complete 
space E with a topology given by a directed family of  semi-norms, where 

U = { x l x ~ E ,  I X - X o l ~ R  L V t E 3 }  (3.1) 

And let the Frdchet derivative f ' ( x )  (x E U) be a (linear) map from U into 
t3 (% g ), and let the following conditions be satisfied: 

1) 12 '(x) - ; ' ( y )  1,,~(0 = L~ Ix - y b(0 

2) f '  is inversible at x = Xo: 

If'(x0)] -1 E ~.~ @9 -1, ¢ ) (3.2) 



3) 

4) 

5) 

6) 
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I [f'(xo)] -lf(xo) I~ < r~ V t ~ 3 (3.3) 

[ [ f ' (x) ] - I  [t,~0-,(0 < b, V t E  3 (3.4) 
0 < h~ = rl, b~L~-~(O < ½ (3.5) 

R~ ~> r~ = (1 - V/(1 - 2h~))rhh~ -1 (3.6) 

Then the solution of  the equation f (x)  = 0 is unique and the Newton- 
Kantorovich type successive approximation 

Xn+] =Xn - [f'(Xn)]-lf(Xn) n E [R + U {0} (3.7) 

converges to the unique solution o f  the equation f (x)  = 0 in U. Here the semi- 
norms of  linear operators are defined as follows 

IT l , , k=  sup ITxl , / Ix t~ t , x ~ 3  (3.8) 
I x l k > 0  

Now, let us apply this theorem to our problem Q6. The Fr6chet derivative 
of  the map U can be written in the form of  a super matrix 

U' [Girted G [ 6 , 4, a ; S ,  t ]  = 

where 

T,I[G4,0;s,t] T.2[G4,0;s,t] ~] 
U l[G~ed, G4, a;s,t] U rG~rea a ,2[  6 , 4, (7;S, 

9 )  

3g~(G 0 + 0 +s)) .2 *" * (G 4 + t)~ 
T,1 [G4, a; s, t] = ((GO)_ 1 _g~(GO + a + s) .3 * (G 4 + t )~}  2 --  / ( 3 . 1 0 )  

g~(a ° + o + s) .3 *" 
r,2 [G4, o;s, t] = ((GO)_ 1 _ g[[(G 0 + a + s) .3 * (G 4 + t)~) 2 (3.11) 

U I  [G~ red, G4, o, s, t] = 2g 1/2 ~(G 0 + o + s) *" * (G 4 + t ) ]  

+ 4 g l ( a  ° + a + s) . 3 .  "*(G4 + t)*27 

+ 3gl(G ° + ~ + s)*: , . ,  Ggea~ (3.12) 
U rGirred G = g l / 2  , 2 t  6 , 4, O;S,  t] ~ ( G ° + o + S )  . 2 . ' ]  

+ 2g~.(C ° + a + s) .4  * (G 4 + t) * -~ - 1 (3.13) 

Here, numerical factors before g indicate the number o f  terms containing the 
respective numbers of  factors G o + a + s etc.; for orders of  convolution one 
has to refer to Fig. 2. 

[V L ~ 3 '  C_ 3 ,  l ((~, G4)) t~ < °°] ~ [~upl o(p2) I < ~1 (3.14) 

[V I. E 3 "  ~ 3, I ((a, G4) ) It < oo] 

[IG4(P>Pz, P3,P4)[ ~ log(Ipi2l/mr2)) log Zlog(IpiZl/rnr 2 
i=1 i=1 
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Fig.  2. G r a p h i c a l  r e p r e s e n t a t i o n  o f  t he  e q u a t i o n  (2 .5 ) .  

( 
/ 

for IPi21 --> °°1 (3.15) 

[The second condition (3.15) may be replaced by another condition of similar 
nature. Let us call this locally convex complete space of  pairs ((o, G4) ) (not 
subject to the equations (2.9) and (2.10)) equipped with this family of  semi- 
norms f2 [~ ] .  We do not know, however, whether one can choose ~ '  and ~ "  
so that ,~' (~ ,~" = 4). It should be noticed that the map I~2 ® I"4 form ~2[~] 
into itself is neither completely continuous nor non-expansive, so that unfor- 
tunately Reich's theory (Reich, 1972) is not applicable. 

Let us define a domain Vin ~2 [,~] : 

V={( ( s , t ) )~ ( ( s , t ) )E f2[~] ,  [((s , t ) )[~<R, V e E r }  (3.16) 

where R, are positive numbers <O(g-a/4).  Then 

l U' [ ( ( s l ,  t l ) )]  - U'[((sz ,  t~))] [L,~(0 < L L  [ ((sl ,  t l ) )  -- ((s2, t2))[~ (3 .17)  

with L~ = O(g°), where ~o is a bijection from ..~ to itself. 
Then one finds that U'[((So, to))] is inversible on any ((So, to)) such that 

for any ~ E ~ ,  [ ((Sl, t~)) [~ < O(gl/2), and 

l[U'[((So, to))]]-lU[((So, to))] [~<rh<~O(g 1/2) (3.18) 

I [U' [((So, to))]] -11~,~-'6) <b~ = O(g °) (3.19) 

and 
_ x _ 1/2 1 (3.20) 0 < h~ - "o~btL~o- (0 - O(g ) < 7: 

R~ ~> r~ = (1 - \ / (1  - 2h~))~hh~ -I = O(g 1/2) (3.21) 

Therefore the solution of the problem Q6 is unique in V. If a non-trivial 
solution of  equation (2.16) exists at all, it must have at least one large semi- 
norm. But the snag is that the domain of such ((s, t)) is not convex so that one 
cannot apply any known method to search for a 'large' solution. 

Similarly, for QN, N = 8, 10 . . . .  < 0% one finds that 'small' solution is 
unique for a given G N. 
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4. Problem Q4 

Let us cat1 Q4 the problem with equation (2.9) with a given G4. This 
problem has a structure different from those of  Q N ( N )  6). 

For this problem, Theorem 1 is applicable and one finds that the solution 
is unique up to 0(g-W3). 

The first approximation 

o 1 [I - -  ' - 1  = F2 [0]] Pc[0] (4.1) 

gives the graphs of  Fig. 4. Therefore all the thresholds appear in o 1 though 
coefficients are modified by higher approximations. As to the lower bound 

+ - 6 3 >  + - @ @  + 

Fig. 3.-Graphical  representation of  the first approximation ~r I to Q4. Here - -  
for G O . 

stands 

of  semi-norms, we have the following theorem (Gandac, 1973). 
[Theorem 2. Let the conditions 

0 ~< sup 
xeS(xo,ff S) 

0 < rL ~< RL (4.2) 

] [F,(xo) ]-1 [F'(x) - F'(xo)]  I,,~ < q, < 1 (4.3) 

a, = I [F'(x0)]-l/~3Co[~ ~<rt(1 - q~) (4.4) 

be satisfied for any t E ,~ .  
Then the equation Fx = 0 has a unique solution x A in S(xo, {r~}) and 

Ix A -  xolL is bounded as follows 

< < l x ' - x o l <  ' (4.s)] 
1 +qL 1 --q~ 

Now let us apply this theorem to the problem Q4. Take % = 0. Then one 
finds qt = O(g), a t = O(g) so that [x*[~ must be O(g), too, i.e. semi-norms of  
x"  cannot be too small or too large. This theorem can be applied also to 
estimations o f  higher Newton-Kantorovich approximations. On the other hand, 
this theorem is trivial for the problems Qn (n >~ 6) because: aL = 0. 
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5. Concluding Remarks 

Uniqueness of 'small' solution does not, however, imply applicabihty of  
perturbation theory, because input is not given in forms of power series in the 
coupling constant. A question related to this is, What G4 can be chosen as a 
input to the infinite system of equations for many point functions whose form 
is specified by the given Lagrangian? 

On the other hand, locally convex space is general enough so that functions 
that cannot be contained in any locally convex space need not be considered 
as serious candidates for physically meaningful solutions. 

Uniqueness of  the descending problem does not, however, imply unique- 
ness of solution of an ascending problem. By ascending problem we mean the 
problem of finding higher many-point functions from a given set of  lower 
many-point functions. 

Another important question is how to extend the techniques discussed 
above to the case when the effective coupling constant is not very small. For 
the imaginary part of ~ to remain positive definite, G4(P 1, P2, P3, P4) has to 
decrease rapidly as lpi2[ tend to infinity. Therefore, it seems appropriate to 
choose a family of  semi-norms in such a way that convergence should guarantee 
the positive definiteness of  Ime .  We hope to come back to this problem in 
the near future. (As G4 is complex, e need not have a real ghost pole even if 
G4 does not decrease rapidly.) 

I f  a four-point function with external lines is given instead of an amputated 
one, the problem Q4 becomes trivial, but Qn (n >~ 6) do not. 

For an interaction that gives rise to a two-particle threshold in the self- 
energy part, the renormalisation procedure (2.4) requires use of pseudo- 
functions so that positive definiteness of the imaginary part of a two-point 
function is jeopardised. 
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